Purified Shigella enterotoxin does not alter intestinal motility.

نویسندگان

  • A Fernandez
  • C A Sninsky
  • A D O'Brien
  • M H Clench
  • J R Mathias
چکیده

A purified Shigella enterotoxin (pST) and a cell-free lysate with pST removed (CFL-pST) from the whole-cell lysate of Shigella dysenteriae 60 R were used to study their effect on the myoelectric activity and mucosal integrity of rabbit ileal segments. We have previously defined two myoelectric patterns: the migrating action potential complex and repetitive bursts of action potentials that occur in response to certain bacteria and their enterotoxins. The in vivo model consisted of isolated ileal segments in male New Zealand White rabbits. The segments were infused with sterile saline (1 ml/h), pST (2.4-micrograms injection), or CFL-pST (1 ml/h). Myoelectric activity in the segments exposed to pST was similar to that with the saline infusion, but CFL-pST induced significant alterations in myoelectric activity in the form of repetitive bursts of action potentials. The mucosa of the segments exposed to pST showed only mild inflammatory changes. In contrast, CFL-pST caused moderate to severe inflammatory changes with enterocyte necrosis. These studies show that pST, a known enterotoxin, did not alter myoelectric activity and had no significant effect on the integrity of ileal mucosa, as determined by light microscopy. CFL-pST caused both inflammation and tissue necrosis with significant alterations in motor activity. These studies suggest that S. dysenteriae 60 R produces a substance or substances other than pST that cause florid in vivo cytotoxicity and alter myoelectric activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of shigella enterotoxin 1 (ShET1) on rabbit intestine in vitro and in vivo.

BACKGROUND Shigella enterotoxin 1 is a novel enterotoxin elaborated by Shigella flexneri 2a that causes fluid accumulation in rabbit ileal loops and a rise in short circuit current in Ussing chambers. AIMS To gain insights into the mechanism of action of shigella enterotoxin 1. METHODS Supernatants from genetically engineered clones either overexpressing shigella enterotoxin 1 or producing ...

متن کامل

Inhibition of small-intestinal sugar and amino acid transport by the enterotoxin of Shigella dysenteriae I.

The enterotoxin of Shigella dysenteriae I produces fluid and electrolyte secretion in the rabbit ileum. These present studies were designed to evaluate nonelectrolyte transport in rabbit ileal mucosa exposed to Shigella enterotoxin. Both 10 mM galactose and 5 mM L-alanine absorptions were significantly impaired in enterotoxin-exposed ileal mucosa compared with control mucosa. L-Alanine influx w...

متن کامل

Histopathological effect of Clostridium perfringens enterotoxin in the rabbit ileum.

Highly purified enterotoxin from Clostridium perfringens was found to have histopathological activity in the rabbit ileum. Unlike the action of cholera, Escherichia coli, and Shigella enterotoxins, epithelium was denuded from the tips of ileal villi at concentrations of the enterotoxin necessary to induce fluid accumulation in the rabbit. Whether or not this observed histopathology is essential...

متن کامل

Effects of prostaglandins and cholera enterotoxin on intestinal mucosal cyclic AMP accumulation. Evidence against an essential role for prostaglandins in the action of toxin.

Both cholera enterotoxin and certain prostaglandins have been shown to stimulate intestinal fluid secretion in vivo, to cause ion flux changes in vitro similar to those caused by addition of cyclic 3',5'-adenosine monophosphate (cyclic AMP), and to activate intestinal mucosal adenyl cyclase. It has been suggested that the effects of the enterotoxin on intestinal cyclic AMP metabolism may be ind...

متن کامل

Activation of the Cdc42 Effector N-Wasp by the Shigella flexneri Icsa Protein Promotes Actin Nucleation by Arp2/3 Complex and Bacterial Actin-Based Motility

To propel itself in infected cells, the pathogen Shigella flexneri subverts the Cdc42-controlled machinery responsible for actin assembly during filopodia formation. Using a combination of bacterial motility assays in platelet extracts with Escherichia coli expressing the Shigella IcsA protein and in vitro analysis of reconstituted systems from purified proteins, we show here that the bacterial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 43 2  شماره 

صفحات  -

تاریخ انتشار 1984